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1   Introduction 

The objective of the project was to provide means for establishing reliable quantitative failure 
initiation criteria for multiple chip modules (MCMs), electronic packages, laminated composites 
and adhesively bonded joints. During Phase I, an easy-to-use, reliable and robust software was 
developed, with a graphic user interface, based on the innovative methods presented in [1], [2] 
and [3], for the computation of generalized flux/stress/thermal intensity factors (GFIFs/GSIFs/ 
TSIFs) and the strength of the singularities for any multi-material interface problem involving iso- 
tropic or anisotropic materials, subject either to mechanical or thermal loading, in a two-dimen- 
sional setting. The existing software product Stress Check provided the framework for this 
development. Stress Check is based on the p- and hp-version of the finite element method, capable 
of a-posteriori error estimation in terms of the data of interest. 

The specific accomplishments during the Phase I project are summarized below: 

• Incorporation of the modified Steklov formulation presented in [1], for computing the strength 
of the singularities (and the associated eigenfunctions) for the heat-transfer and elasticity prob- 
lems, into the software product Stress Check. 

• Numerical solution of several representative test cases and comparison with known exact solu- 
tions to demonstrate the robustness and accuracy of the computation of eigenpairs. 

• Implementation of the algorithm for extracting GFIFs and GSIFs. This algorithm, based on the 
complementary energy principle in conjunction with the p- and hp-versions of the finite ele- 
ment method, is outlined in [2]. 
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• Verification of the accuracy and robustness of the implemented algorithm by computing GFEFs 
and GSIFs for problems where the exact solution is known. 

• Implementation of an algorithm for computing the thermal stress intensity factors (TSIFs), 
based on the strategy presented in [3]. 

• Numerical verification of some thermo-elastic problems for which reference solutions are 
available in the literature. 

• Development of a detailed plan for the implementation of this technology in three dimensions. 
The three- dimensional setting involves vertex singularities, edge singularities and vertex-edge 
singularities. 

The successful completion of these activities made it possible to address the following impor- 
tant questions: 

• Which are the characterizing parameters of a thermal, elastic and thermo-elastic solution near a 
singular point associated with multi-material anisotropic interface problem for any type of sin- 
gularity? Consequently, what should be changed in the design so as to minimize the likelihood 
of failure initiation? Given a set of alternatives, which combination of materials is optimal, and 
which is the best geometric configuration? 

• When failure is observed in a device, how should it be modified so as to reduce the likelihood 
of a future failure? 

• How accurate are the parameters that influence failure initiation obtained by the numerical 
algorithm, i.e., how reliable are the results obtained by numerical simulation? How does the 
temperature field affect the solution in the vicinity of the singular points? 

• How should the analyst interpret the new GFIFs/GSIFs and the "eigenpairs" when correlating 
with experimental observations? 

• How to extend the current two-dimensional capability to three dimensions where the full 
potential of the technology will be realized? 

A detailed description of each activity and the corresponding formulations are given in the next 
section. 

2 Accomplishments 

This section describes the activities performed during the Phase I project, in which an easy-to- 
use, reliable and robust software was developed for the computation of the generalized flux/stress 
intensity factors and the strength of singularities for multi-material interface problems subjected 
to thermo-mechanical loads in two-dimensions. 

The solutions of linear elastostatic and steady-state heat transfer problems in the vicinity of 
crack tips were an intensive subject of research during the last 30 years. Although an exact solu- 
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tion can be obtained for cracks in bodies of simple geometries, for most cases involving complex 
geometries, anisotropic materials, and cracks at bi-material interfaces only a numerical approxi- 
mation can be obtained. Some typical singular points in an electronic device, for example, where 
failure initiation commonly occurs, are illustrated in Figure 1. 

Crack 

Encapsulant 

Solders 
•  Singular points 

FIGURE 1.   Typical sites of failure initiation in an electronic device. 

The solution in the vicinity of singular points are of considerable engineering interest (espe- 
cially for general domains containing multi-material interfaces, and anisotropic materials) 
because it is directly or indirectly related to failure initiation in composite materials and electronic 
devices. In the neighborhood of singular points the exact solution of two-dimensional elastostatic 
problems can be expanded in the form: 

{u EX >=   1 
i=  1 

a 
A- r '{«,•(6)} (1) 

where {uEX} is the displacement vector in the x and y directions, r and 0 are polar coordinates cen- 
tered on the singular point; ar are called eigenvalues and §{(Q) are called eigenfunctions. These 
eigenpairs {av <]),■) depend on the material properties, the geometry and the boundary conditions 
((^•(6) are smooth vector functions). The A,- are coefficients which depend on the loading. Because 
of their close analogy to stress intensity factors in linear elastic fracture mechanics, At are called 
generalized stress intensity factors (GSIFs). In the case of linear steady-state heat transfer prob- 
lems, the solution in the neighborhood of singular points is analogous to Eq. (1), the differences 
are that the equation is in a scalar form and the coefficients are called generalized flux intensity 
factors (GFIFs). 
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For general singular points the exact solution {uEX} is generally not know explicitly, i.e., nei- 
ther the exact eigenpairs nor the exact GFBFs/GSIFs are known, therefore a numerical approxima- 
tion must be found. 

The stresses in the same neighborhood can be computed from the displacements given by Eq. 
(1) and the material properties as: 

oo        a--1 
{a}=   XV'     {v.(6)} (2) 

i = 1 

where V|/,(9) depend on the eigenfunctions in Eq. (1) and the material coefficients. It is clear from 
Eq. (2) that when a,- < 1, the stresses become singular for r=0. 

The key to successful failure analysis in the presence of singular points is to compute reliably 
both the eigenpairs and the GSIFs. The eigenvalues characterize the strength of the singularity, the 
eigenfunctions characterize the straining modes and their amplitudes (the GSIFs/GFIFs) quantify 
the amount of energy residing in particular straining modes. 

A general method for computing the solution in the vicinity of any singular point has been 
implemented which first determines the eigenpairs, followed by the computation of the GSIFs/ 
GFIFs for two-dimensional problems. During the Phase I project, the following specific objec- 
tives were achieved: 

1. Incorporation of the modified Steklov formulation presented in [1], for computing the 
strength of the singularities (and the associated eigenfunctions) for the heat-transfer and 
elasticity problems in two-dimensions, into the software product Stress Check. 

2. Implementation of the algorithm for extracting the GFIFs and GSIFs. This algorithm, based 
on the Complementary Energy Principle in conjunction with the p- and hp- versions of the 
finite element method, is outlined in [2]. 

3. Several representative test cases were solved to demonstrate the robustness and accuracy of 
the computation of eigenpairs, GFIFs and GSIFs for problems where the exact solution was 
available. 

4. Implementation of an algorithm for computing the thermal stress intensity factors (TSIFs), 
based on [3] and performance of a thermo-elastic analysis of a typical problem. 

2.1 Computation of Eigenpairs 

The implementation of the modified Steklov method into Stress Check allows for the compu- 
tation of the eigenvalues, and the corresponding eigenvectors, for singularities in two-dimensional 
elastostatic and heat-transfer problems. Once the data are entered into the program, the area 
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around the selected singular point (but excluding the singular point) is internally divided into 
finite elements through a meshing process which does not require user intervention. This 'internal 
mesh' is arranged in a circular ring around the singular point selected by the user in such a way 
that the element boundaries coincide with the material interfaces. The number of elements of the 
internal mesh is controlled by the number of material interfaces around the singular point and by 
the solid angle of the singularity as shown in Figure 2. The largest solid angle for a single element 

Material 2 Material 1 

Elem. 2 —jg 

Material 3     / 

■lfc> 

Nr    Elem. 1 

MJ^ w Solid Angle 

Elem. 3 - ^^ Singular Point 

FIGURE 2.   Typical 'internal mesh' around singular point in 2D. 

is limited to 120°. For each element of the 'internal mesh' we compute the corresponding stiffness 
and mass matrices. Once the elemental matrices are assembled and the static condensation is per- 
formed, the following eigenvalue problem is obtained: 

[Ks]{uR} = a[M){uR} (3) 

where [Ks] is the condensed stiffness matrix; [M] is the mass matrix, and {uR} is the vector of 
coefficients corresponding to the degrees of freedom associated with the circular boundaries of 
the 'internal mesh'. The solution of the eigenproblem given by the above equation yields approxi- 
mation for the eigenvalues at and the corresponding eigenvectors. The system of equations is 
solved for increasing polynomial order to get a converging sequence of solutions (eigenpairs) 
using routines from the LAPACK library. 

The steps and fundamentals for obtaining the system described by Eq. (3) are described in the 
following. 
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Consider a domain Q*R shown in Figure 3, in which r, 0 are the coordinates of a cylindrical 

Material 3 

Material 2 Material 1 

Singular point 

FIGURE 3.   Solution domain and notation for the modified Steklov formulation. 

coordinate system located in the singular point. By formulating the weak form over Q.*R, the sin- 
gular point is excluded from the domain of interest such that the accuracy of the finite element 
solution does not deteriorate in its vicinity. On the boundaries Tl and T2 consider either traction- 
free or zero displacement boundary conditions: 

T = 0      or     u = 0 on 1^,!= 1,2. 

In Q*R, ux and uy may be represented as follows: 

a( /i(9) 

(4) 

/2(6) 
(5) 

Using Eq. (5), on T3: 

and a similar condition on T4. 

3» * TT-w = (a/R)u 
dr 

(6) 

Multiplying the equilibrium equation by v= {vxv/e H](Q.*R) x H^&R), integrating 
using Green's theorem, and following the steps presented in [1], the modified Steklov weak form 
is obtained: 

Seek ue C, 0*«e H\Q.*R)XH
1
(QR) 
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B(t,v)-(NR(t,h + NR.(u,t)) = a(MR(Vv)+MR.(Z,h), V ve   Hl(&R) x Hl(QR) (7) 

where C is the complex plane and 

ä(K,V) = jj([D]hT[E]([D]ti)dQ, (8) 

Affi(«,v) - \[vT[Q][E][R]l]r = R dB, (9) 

JVÄ(«,v) = \[vT[Q][E]{[D(6)]u)]r = R dB, 

and [£>], [£>(0)], [Q] and [Ä] are given as follows: 

(10) 

[D] = 

? 
II 

dx 
a 

I) 
dy 

a a 
dy dx_ 

[ß(e)] = I 

(_sine)_      o 

o       cose A 

coseA (-sine)A 

(11) 

cos 6 0 
0 sin6 

sin6 cos 6 

[ßl = [Ä] =      0     sine (12) 
cos6    0    sinG 

0     sin6 cos 6 

and [E] is the material matrix. 

Remark 1. The domain Q*R does not include singular edge, hence no special refinement of the 
finite element mesh is required. 

Remark 2. The formulation of the weak form was not based on the assumption that the material is 
isotropic, and in fact can be applied to multi-material anisotropic interface. 

The domain £2*R is divided into finite elements through a meshing process, as described 
before. The polynomial basis and trial functions, {Oj}, are defined on a standard element in the £, 
r| space such that -1< £, <1, -1 < r\ <1. The entries of the unconstrained stiffness matrix corre- 
sponding to B(u,v) are given by (see Ref. [1]): 

Ku = JJ([D]{<E>J)r[£][D]{0.}dQ (13) 
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For simplicity traction-free boundary conditions are assumed on Tl and T2. Considering first 
N(u,l) = NR(u,v) + N .(u,v), the entries of the matrix [NR] corresponding to the bilinear form NR are 
computed using Gauss quadrature: 

s = i     ;, k = l 

where Wj and t,s are the weights and abscissas of the Gauss quadrature points, respectively, and 
Pa and dPkj are matrices given explicitly in [1]. 

The entries of [MR] are: 

S 3 

(M«)i? = ^XW' X  'P^s)Elkh(0 (15) 
* = 1       /, A = 1 

Expressions similar to Eq. (14) and Eq. (15) exist for the matrices [NR*\ and [MR*\. 

Denoting the set of all coefficients by {utot\, and the set of coefficients associated with T3 and 
T4 by {uR}, the following eigenproblem is obtained: 

([K] - [NR] - [NR.]){utot] = a([MR] + [MR.]){UR} = a[M]{uR} (16) 

The vector which represents the total number of nodal values in Q*R can be divided into two 
vectors such that one contains the coefficients {uR}, the other contains the remaining coefficients: 
{utot}

T = {{uR}T, {uin}T}. By eliminating {uin}, the reduced eigenproblem is obtained: 

[Ks]{uR] = a[M]{uR} (17) 

Solution of the eigenproblem given by Eq. (17) yields approximations for eigenpairs with high 
accuracy, efficiency and robustness. 

A new module inside Stress Check allows users to compute the eigenvalues and associated 
eigenfunctions in a very convenient and easy to use way. The steps necessary to compute the 
eigenpairs can be summarized as follows: 

•  First, the model problem is loaded into Stress Check from an existing neutral file or it is created 
inside the program using the existing pre-processing tools. Stress Check is a p-version finite 
element analysis program developed by ESRD, Inc. for the solution of elastostatic and heat- 
transfer problems. It has a Motif-based graphic user interface that allows for the creation of all 
the geometric features of the problem under consideration. After the geometry was created, the 
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model can then be meshed, the material properties specified and the boundary conditions 
imposed. Figure 4a shows a typical two-dimensional model problem displayed in the main 
window of Stress Check. 

IW      \m       *•**,!       ftfUMI»      g»OiM       »MM p It—   !»* 

iS     U^'W     p P *,?"*   V 

y i 

Display: O Report  B Graph Q File 

Bun      Type Bar 

Solution:    [|™ 

Runs:   Br 

Option: 

O None 

^> J-Integral 

<^ Stress Intensity Factors 

4fr Generalized SIF 

B Radius:     | p.g 

# of terms:  i £ 

(a) Main Window (b) Fracture Mechanics dialog box 

FIGURE 4.   Stress Check Interface. 

• Second, the Fracture Mechanics dialog box is loaded by a menu selection from the main win- 
dow bar. As shown in Figure 4b, the fracture mechanics options for two-dimensional elasticity 
are the J-integral, the Stress Intensity Factors and the Generalized Stress Intensity Factor. The 
first two options are applicable only for cracks in homogeneous materials, and are standard fea- 
tures of Stress Check. The Generalized SIF option has been incorporated as part of this Phase I 
project 

• Finally, to compute the eigenvalues and eigenvectors, the user enters the number of eigenpairs 
to be computed in the "# of terms" region of the dialog box and then selects the singular point 
by pointing to it with the cursor and clicking the left button of the mouse. The results are dis- 
played in tabular and/or graphical format depending on the display selection in the dialog box. 

The implementation of the modified Steklov method in Stress Check was tested by solving a 
set of representative benchmark problems for which exact solutions are available in the literature. 



Accomplishments 

Two groups of problems were investigated: Steady state linear heat-transfer problems and linear 
elastostatic 2D-problems as described in the next sections. 

2.1.1 Heat transfer problems 

Steady state linear heat-transfer problems (also called scalar problems) in the neighborhood of 
singular points are considered in this Section. Here u denotes the temperature field in a domain. 
The governing differential equation is: 

2 2 2 
d u     „      du du 

2dxdy    "Z2dy2 (18) 

where at; are the coefficients of heat conduction in each subdomain, with o-tf^ciß and the a,y satis- 
fying the elliptic restriction: aua22 " ai22 > 0 in eacn subdomain. In the case of multimaterial 
interfaces, it is assumed that the materials are perfectly bonded. 

Scalar problem 1: Isotropie clamped-free crack. Circular domain of unit radius with a crack 
along the positive x-axis. One face of the crack (1^) has zero temperature boundary condition and 
the other face (T2) is flux free. The outside boundary (TR) has an imposed flux (Figure 5) 

Boundary Conditions: 

u = 0onT1; 
nduldlQ = 0onT2 

du/dr = y on rR 

FIGURE 5.   Scalar problem 1. Notation. 

The exact solution for this problem is given by (ref. [4]): 

w(r,0) = -1.35812r1/4sin(6/4) +0.970087 r3/4sin((36)/4) + (19) 

The exact values of the first two eigenvalues for this problem are: 0^=1/4 and 00=3/4. 

10 
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Scalar problem 2: Anisotropie reentrant corner. Heat transfer problem in an anisotropic material 
governed by Eq. (18) with an=4, a12=0, 022= 1- The boundary consists of a 90° reentrant corner 
generated by two flux-free edges Tj and T2, which meet at the origin of the coordinate system and 
u(0,0)=0 (Figure 6). The circular boundary of the domain (rR) is loaded by flux boundary condi- 

Boundary Conditions: 

u(0,0) = 0 

aw/ae = oonr1,r2 

FIGURE 6.   Scalar problem 2. Notation. 

tion which corresponds to the first symmetric eigenfunction of the asymptotic expansion of u(x,y) 
about the reentrant corner (Ref. [9]): 

qr = (aucos e + a22cos 6)^-+-sm2e(a22-au)l-^ 

where the solution u(r,Q) can be written in the following form: 

(20) 

2n-   -2n- 
3„     3, 2„  3 u = VA/   2   3(l + 3sin 9) cos 

■In atan(2tan0) (21) 
n = 1 

The GFBF Aj is arbitrarily selected to be A:=l, while the others are A=0, i=2, 3,... The exact 
values of the first two eigenvalues are: 0Cj=2/3 and 00=4/3. 

Scalar problem 3: Internal interface with two materials. Two materials perfectly bonded along a 
common edge satisfying the following equation: 

pSI u = 0 n. 

with the following flux conditions along the external boundary (Figure 7): 

du = pi[a1r
a,'1h1(Q) + a2r

a2'\2(e)] r,= ao,. i = 1,2 

(22) 

(23) 

11 
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The material coefficients are: Pi = lO, /?2=1; the eigenvalues are: q^O.731691779, 
02=1.268308221. and: 

Ä,(6) 
cos[(l -a)0] + c1sin[(l -a)0] -* on Tj 

CjCOs[(l -a)0] + c2c3sin[(l -a)0] -» on  T2 

(24) 

«2(9) = 
cos[(l +a)0]-c3sin[(l +a)0] -» on Tx 

c1cos[(l + a)0]-c2c3sin[(l + a)Q] -> on T2 

(25) 

where c1=6.31818181818182, c2=-2.68181818181818, c3=0.64757612580273, and 
a=0.26830822130025. The exact solution for this problem is (ref. [5]): 

r=2     . pxri 
/!' •. ̂ ^BR L°A 
liiii||iiiiffl 

Q2 

Boundary Conditions: 

9u/3r =f(r,Q) on r2, T2 

FIGURE 7.   Scalar problem 3. Notation. 

u(r,B) = Axr 'hl(Q)+A2r 2/i2(9) (26) 

where Aj = A2= 1. 

Results: Figure 8 shows the finite element meshes used for the scalar problems. For problem 1, 
two layers of geometrically graded elements (with a common factor of 0.15) towards the singular 
point were used. For problem 2 no geometrically graded meshes were used, while for problem 3 
only one layer of elements was placed around the singularity. 

The results of the computation of the eigenvalues are summarized in Table 2. For each problem 
the exact value of the first two eigenvalues, as obtained from the corresponding references, and 

12 
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FIGURE 8.   Mesh and boundary conditions for scalar problems. 

those computed numerically with the modified Steklov method implemented in Stress Check, are 
included. As the results indicate, the correlation between numerical and exact values is excellent. 

TABLE 1. First and second eigenvalues for the scalar model problems 

Scalar 
Problem 

First Eigenvalue Second Eigenvalue 

Exact Numerical Exact Numerical 

1 1/4 0.250000000 3/4 0.750000000 

2 2/3 0.666666676 4/3 1.333333308 

3 0.731691779 0.731691779 1.268308221 1.268308223 

13 
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Finally, Figure 9 shows the first eigenfunction as computed in Stress Check for each scalar prob- 
lem. 

ijjkfet ft* ***> pi* * iM-:.lH9MVMQFt ig*. ***«« 

*^SiB#ft«i»SJ---" »^arMimt*                         *stf^sm**i*^ *   ■iJmm.i.lm 

l^U: 

1»* 

Problem 3 > 
! 

IM» 

FIGURE 9.   First eigenfunction for the scalar problems. 

2.1.2 Elastostatic problems 

Linear elastostatic model problems in the neighborhood of singular points are considered in 
this section. Here u = {ux, uy}T denotes the displacement vector in x, y-directions and ax, oy and 
Txy are the stresses. For multi-material interfaces continuity of displacements and tractions across 
boundary interfaces is assumed. 

Elastostatic problem 1: Traction-free Isotropie L-shaped domain. L-Shaped plane elastic body 
(Figure 10) loaded along the boundaries by the Mode 1 and Mode 2 stress components obtained 
from the asymptotic expansion of the displacement field about the vertex: 

cx = A1a1r
a'"1/i(e)+A2a2r

a2"1/2(e) 

Oy = Axaxr '    gl(Q)+A2a2r
2    g2(Q) 

x    = A^r^' hy(e) + A2a2r
a2~ h2(Q) 

14 
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where A1 and A2 are constants analogous to the mode 1 and mode 2 stress intensity factors in lin- 
ear elastic fracture mechanics; ccj=0.5444837368 and Oo=0.9085291898 are the first and second 
eigenvalues; and/), gt, hb i=l,2 are functions of 6 given in ref. [6]. 

a 
l 

A l 
i k 

v 
x^    i r       y 

1 1 

FIGURE 10. Elastostatic problem 1. Notation. 

Elastostatic problem 2: Traction-free crack at an isotropic material interface. Bi-material inter- 
face composed of two homogeneous and isotropic materials with continuity of tractions and dis- 
placements across the interface (Figure 11). The body is in a state of plane strain and it is loaded 

FIGURE 11. Elastostatic problem 2. Notation. 

15 
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by the stress field corresponding to the exact solution of the asymptotic expansion about the sin- 
gular point: 

1 ÜK 3 3 9^      I 
Tn(r,Q)\ _., = -j={^:/[cos(Elnr)orr+sin(elnr)arr] + ^//[cos(eln?-)arr+(-sin(elnr))arr]}   _ 

Tt(r,Q)\ =15 = -;={JSr/[cos(8lnr)afe+ sin(elnr)or6] + Ar/7[cos(elnr)are+(-sin(elnr))ar9]}| 
:  1.5 

where arr and Gr6 are given in ref. [7], Kj and Ku are the stress intensity factors and e is given by: 

1      [{2,-Avx)G2 + Gli 
e = J_inr-—,   VJ    J\= 0.07581178 

2TC      (3-4v2)G1 + G2 

where v is the Poisson's ratio and G is the shear modulus of the material. The first two eigenvalues 
for this problem are complex: at = 0.5 + i e and oco = 05 ~ i £• 

Elastostatic problem 3: Inclusion problem. Composite body consisting of two dissimilar isotro- 
pic, homogeneous and elastic wedges, perfectly bonded along the interfaces (Figure 12). The 
body is loaded by the stress field corresponding to the exact solution of the asymptotic expansion 
about the singular point as given in ref. [8]. The eigenvalues characterizing the stress singularity 

E1=1000Ö\   A y 
,v=0.3 

FIGURE 12. Elastostatic problem 3. Notation. 

at (0,0) are: ax = 0.512472160 and oc2 = 0.730975740. 

16 



Accomplishments 

Results: Figure 13 shows the mesh used in solving the elastostatic model problems. For problems 
1 and 2, two layers of geometrically graded elements (with a common factor of 0.15) towards the 
singular point were used. For problem 3 only one layer of elements was placed around the singu- 
larity. 

Problem 1 

Problem 2 

-4   4   *J. 

r y 
-t» f 

.:¥- '% 

?&$■■ 
i^ I 

SU 

fa 
A 

ff^aL.... :i i -i:m y^^rT^-    J- 

Problem 3 

FIGURE 13. Mesh and boundary conditions for elastostatic problems. 

17 
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The results of the computation of the eigenvalues are summarized in Table 2. For each prob- 
lem, the exact value of the first two eigenvalues as obtained from the corresponding references, 
and those computed numerically with the algorithm implemented in Stress Check are included. As 
the results indicate, the correlation between numerical and exact values is excellent. 

TABLE 2. First and second eigenvalues for the elastostatic model problems 

Elastostatic 
Problem 

First Eigenvalue Second Eigenvalue 

Exact Numerical Exact Numerical 

1 0.5444837368 0.5444837375 0.9085291898 0.9085291893 

2 0.5+0.07581178/ 0.5+0.07581178/ 0.5-0.07581178/ 0.5-0.07581178/ 

3 0.512472160 0.5124721606 0.730975740 0.7309757404 

Finally, Figure 14 shows the first set of eigenfunctions corresponding to problems 1 and 3. 
They include the eigenfunctions associated with the two displacement components ux, uy and the 
eigenstresses ax, Gy T„. 

2.2 Computation of Generalized Flux/Stress Intensity Factors 

Once the eigenpairs have been computed, they are used for extracting the GFIFs/GSIFs from 
the finite element solution. The procedure is described for the case of elasticity. The case of heat 
transfer is analogous. 

After solving the elastostatic problem over the entire domain Q. by means of the finite element 
method based on the displacement formulation, UFE is obtained. A small sub-domain around the 
singular point is considered next. Defining SR as the set of interior points of a circle of radius R, 
centered on the point P, QR is defined by Q. n SR, and TR is the circular part of its boundary. See 
Figure 15. 

The complementary variational principle over QR can be stated as: 

Seek G0 G EC(Q.R), such that 

Bc(a0,a{) = Fc(Cl) V a,   e EC(QR) (27) 

18 
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FIGURE 14. Eigenfunctions for elastostatic problems. 

EC(QR) being the statically admissible space (see a detailed definition in ref. [2]), and Bc and Fc 

are given by: 

Fc(aj) =   J lT[Q]axds 

(28) 

(29) 

any 

where [£] is the material matrix, dQ,^u) is that part of the boundary where the displacement vector 
u is prescribed, and [Q] is given in Eq. (12). 

19 
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FIGURE 15. Typical singular point P. 

For the complementary weak form the trial and test spaces are chosen to be linear combina- 
tions of the eigenstresses, which are computed from the eigenpairs, using the stress-strain rela- 
tionship and Hooke's law. The z/'-th term of the compliance matrix which corresponds to the 
bilinear form in Eq. (27) is given by: 

(Bc)ß = j   j   / '       ' £ (DuiEkl(Du)idrdB 
0    8i ; t_ l 

(30) 

l,k= 1 

a^ being the real part of the eigenpair, and {Duj is a vector corresponding to the 7-th eigenfunc- 
tion and is given in ref. [2]. 

The eigenstress tensor, having been derived from the eigenpairs, automatically satisfies the 
boundary conditions on all boundaries except TR, so that the linear form in Eq. (29) degenerates 
into an integral over the circular boundary TR alone. 

Replacing the vector u in Eq. (29) with the approximated finite element solution uFE on T3 

(see Figure 3), thej'-th term of the load vector corresponding to the linear form Eq. (29) becomes: 

(Fc). = R\ L
T
[Q][E](DU

U) d<d (31) 
(r = R) 

FE FE FE 
Where u0 = {{ux  cosQ + uy   smQ),(ux  sva.Q + uy  cos6))   . 

Solving Eq. (27), an approximation for the coefficients of the asymptotic expansion (the 
GSIFs) is obtained. Numerical tests demonstrated that the rate of convergence of the GSIFs is as 
fast as the convergence of the strain energy, therefore the method is "superconvergent". 
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The computation of the GFIFs/GSIFs was integrated in Stress Check within the same module 
described in Section 2.1 for the computation of eigenvalues and associated eigenfunctions for 
two-dimensional problems in heat transfer and elasticity. The steps to compute the GFIFs/GSIFs 
are as follows: 

• The model problem is loaded into Stress Check from an existing neutral file, or it is created 
inside the program using the existing pre-processing tools. 

• After executing the corresponding analysis (elasticity or heat transfer, depending on the prob- 
lem), the Fracture Mechanics dialog box is loaded by menu selection from the main window 
bar. 

• The GFIFs/GSIFs is computed by entering the radius of the extraction circle, the number of 
terms to be computed in the "# of terms" region of the dialog box, and then selecting the singu- 
lar point by pointing to it with the mouse cursor. The results are displayed in tabular and/or 
graphical format, depending on the display selection in the dialog box. 

A set of benchmark problems for which analytical (exact) solutions are known were investi- 
gated. These problems have been selected as representative of the types of singularities present in 
practical engineering situations associated with linear steady state heat transfer and elastostatic 
models. The six problems described in Section 2.1.1 and Section 2.1.2 are considered for the com- 
putation of GFIFs (scalar problems) and GSIFs (elastostatic problems). 

TABLE 3. First and second GFIFs for the scalar problems 

Scalar 
Problem 

Ai A2 

Exact Numerical Exact Numerical 

1 1.358097 1.328489 0.970087 0.970085 

2 1.0 0.998462 0.0 0.000028 

3 1.0 1.001243 1.0 1.001222 

Table 3 shows the first and second generalized flux intensity factors (Alt A2) for the heat 
transfer problems, as computed using the present algorithm and the corresponding exact values. 
The convergence characteristics of the extraction procedure are illustrated in Figure 16, which 
shows the values of A1 and A2 as a function of the number of degrees of freedom (DOF) for scalar 
problem 1. As the number of degrees of freedom of the finite element solution is increased, the 
GFIFs reach a limit value which is practically independent of the discretization. 
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Scalar isotropic clamped-tree crack 

Solution = SOL, rum 1 to 8 (tip=16) 

Generalized Flux Intensity Factors, Int. Radius = 0.9 

Est.Lirait A1=-1.353534e400 (1.85X) Est.timit A2=-9,700850e-01 (0,00%) 
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FIGURE 16. Convergence of A1 and A2 for scalar problem 1. 

Table 4 shows the first and second generalized stress intensity factors (Aj, A2) for the elasto- 
static problems. Also included are the corresponding exact values. Figure 17 shows the conver- 

TABLE 4. First and second GSIFs for the elastostatic model problems 

Elasticity 
Problem 

Ai A2 

Exact Numerical Exact Numerical 

1 1.0 0.999699 1.0 0.999989 

2 1.0 1.000122 1.0 0.999632 

3 2.506628 2.508634 2.506628 2.506899 

gence of the GSIFs for elasticity problem 1 as obtained from Stress Check in tabular and graphical 
forms. 
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FIGURE 17. Convergence of A1 and A2 for elasticity problem 1. 

2.3 Computation of Thermal Stress Intensity Factors 

When an elastic body is subjected to thermal loading, the first two coefficients of the asymp- 
totic expansion about the singular points in Eq. (1) are called the thermal stress intensity factors 
(TSIFs). The computation of the TSIFs can be performed by using the modified Steklov method 
for the computation of the eigenpairs; the minimum complementary energy principle to obtain the 
stress intensity factors; and Richardson's extrapolation to determine the TSIFs as the limiting pro- 
cess when R —> 0 (Figure 3). The details of the formulation are available in [3]. 

To compute the TSIFs, a numerical algorithm was integrated into Stress Check within the 
same interface as the one used for the computation of the GSIFs. The implementation involves the 
following steps: 

Step 1. Solve the thermal problem: Find the temperature distribution over the entire domain given 
the flux and temperature boundary conditions. Compute the smallest eigenvalue (ßj) asso- 
ciated with the flux singularity by the modified Steklov method as described in Section 
2.1. 
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Step 2. Solve the thermoelastic problem: Using the temperature distribution obtained from the 
solution of the thermal problem as input, obtain the corresponding displacement field of 
the elasticity problem. 

Step 3. Compute eigenvalues andSIFs: Extract the first two eigenvalues (als a2) and the first two 
stress intensity factors (Kj, Ku) from the thermoelastic problem for a given radius (R) of 
the integration circle. Stress Check will automatically compute the stress intensity factors 
for three values of the integration circle: 0.9i?, R and l AR. 

Step 4. Compute TSIFs: Using Richardson's extrapolation, project the three values of each stress 
intensity factor computed in Step 3 to R=0. The error in the computation of the stress 
intensity factors is of the order (R)q, where q=$j-aj+l for the first intensity factor (Kj) 
and q=$j-a2+l for the second intensity factor (Kn). 

The implementation is illustrated with the solution of a representative thermo-elastic problem 
in two-dimensions. 

Central crack in a rectangular plate: Consider a rectangular isotropic plate subjected to two 
different thermal loadings for which numerical results are available in the literature. The plate of 
width 2W, length 2L and crack of length 2a=2.0 with L/W=1.0 and a/W=0.2 is solved for two 
thermal loadings representing modes I and II respectively (Figure 18). Since the results are inde- 

A B 

D 

E  F 
I  2a   I 
k—-H 

2L 

2W 
< ► 

Mode I Loading 
AB, BC, CD, DA: T=100 
EF: T=0 

Mode II Loading 

AB: T=100 
CD: T=-100 

BC, DA, EF: qn=0 

FIGURE 18. Plate with central crack. Notation. 

pendent of the thermal conductivity for isotropic materials, the heat conduction coefficients are 
taken as: a11=a22=1-0, a12=0. The mechanical properties of the material are: Modulus of Elastic- 
ity £=1.0; Poisson's ratio v=0.3; coefficient of thermal expansion oc=0.01. Plane-strain condi- 
tions are assumed. Because of symmetry, only one half of the plate is analyzed. Figure 19 shows 
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the finite element mesh used to solve the problem for mode I and mode II loadings. Only one layer 
of geometrically graded elements towards the crack tip was used in this case. 

^ 

\ / 

/ \ i 
y 

Detail 

FIGURE 19. Finite element mesh for the plate problem. 

The values of the stress intensity factor Kj ^computed for three radii of the integration circle 
for Mode I loading are shown in Table 5, together with the values computed using Richardson's 

TABLEs.TSIFs for Mode I loading. Computed and extrapolated values. 

R K/°) Kj« K/2> 

0.45 1.283830 

0.809215 

0.50 1.336565 

0.811445 

0.79915 

0.55 1.389077 

extrapolation {KJ1^ and It/2*). For Mode I loading Ku=0. The smallest eigenvalue associated with 
the flux singularity was computed to be ß;=0.5 and the first two eigenvalues associated with the 
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elasticity singularity are: a1=a2=0.5. Figure 20 shows the convergence of the mode I TSIF as 
obtained from Stress Check in tabular and graphical forms, as a function of the number of degrees 
of freedom (DOF). 

Esl.Limit A1=7.986933e-01 (0.06%) 
 1       ■       | , 1 1 1 , 1 1       ■       I 1  

Al 
Limit A1 

H—■—h -I—■—h H—- 

DOF 

Extrapolated TSIF 
DOF TSIFl TSIF2 

53 5.815359e-01 1.137471e-14 
155 7.314151e-01 9.745229e-lG 
273 7.524530e-01 T-1.761370e-15 
439 7.785932e-01 7.229132e-15 
653 7.962741e-01 1.814B41e-14 
915 7.994875e-01 2.199269e-14 
1225 7.988002e-01 5.538085e-15 
1583 7.991494e-01 5.126567e-15 

FIGURE 20. Convergence of Mode I TSIF. 

The values of the stress intensity factor Ku ^computed for 3 radii of the integration circle for 
Mode II loading are shown in Table 6, together with the values computed using Richardson's 

TABLE6.TSIFS for Mode II loading. Computed and extrapolated values. 

R K/» K„« Kn
(2) 

0.45 0.027258 

0.122953 

0.50 0.016626 

0.123231 

0.12170 

0.55 0.005965 

extrapolation (Kn (1) and Ku (2)). For Mode II loading Kj=0. 
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Finally, the extrapolated values of the thermal stress intensity factors Kj (for Mode I loading) 
and Kn (for Mode II loading) are compared with the values published in the literature in Table 7. 

TABLE7.TSIFS for Mode I and II loading. Comparison with references. 

Ref [10]    Ref [11]    Ref [12] 
Present 
Method 

0.8593      0.7759      0.7759 

0.1317      0.1207      0.1185 

0.7992 

0.1217 

The numerical example for a crack-tip singularity indicates that the method implemented in 
Stress Check for the computation of the thermal stress intensity factors is accurate and efficient. 

3 Extension to Three-dimensions 

The proof of concept completed for two-dimensional problems can be extended to three- 
dimensional problems that typically occur in the design and manufacture of electronic compo- 
nents. This involves detailed development and implementation of algorithms for the computation 
of the eigenpairs that characterize the temperature and displacement fields in the vicinity of singu- 
larities caused by multi-material interfaces and certain topological details in three dimensions; 
extraction of the generalized flux and stress intensity factors in three dimensions, and a posteriori 
estimation of the error in the computed flux and stress intensity factors. 

3.1 Objectives 

The main goal of Phase I was to develop easy-to-use, reliable and robust software, with a 
graphical user interface, based on the innovative methods presented in Section 2, for the computa- 
tion of GFIFs/GSIFs, TSIFs and the strength of singularities for any multi-material interface prob- 
lem involving isotropic or anisotropic materials, subjected either to mechanical or thermal 
loading, in a two-dimensional setting. The existing software product Stress Check provided the 
framework for this development. The following specific objectives are considered as an extension 
of the methods implemented during the Phase I project: 

(1) Develop and implement an algorithm for the computation of eigenpairs that characterize 
the temperature distribution in the vicinity of singular vertices and edges in multi-material 
interface problems: Investigate the extension of the Steklov method developed for two- 
dimensional problems for the computation of eigenpairs in three-dimensions. Incorporate 
into Stress Check the modified Steklov formulation for computing the strength of singu- 
larities (and the associated eigenfunctions) for the heat-transfer problem. 
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(2) Develop and implement an algorithm for the computation of the generalized flux intensity 
factors (GFIFs) in the case of steady state heat conduction problems: The algorithm is 
based on the Complementary Energy Principle in conjunction with the p- and hp-versions 
of the finite element method. 

(3) Develop and implement an algorithm for the computation of eigenpairs that characterize 
the strain distribution in the vicinity of singular vertices and edges in multi-material inter- 
face problems: The modified Steklov formulation for computing the strength of singulari- 
ties (and the associated eigenfunctions) can be extended for elasto-static problems in 
three-dimensions 

(4) Develop and implement an algorithm for the computation of the generalized stress inten- 
sity factors (GSIFs) when an elastic body is subjected to mechanical loads: The algorithm 
is based on the Complementary Energy Principle in conjunction with the p- and hp-ver- 
sions of the finite element method. 

(5) Develop, implement, test and document an algorithm for computing the thermo-elastic 
stress intensity factors (TSIFs) in three-dimensions. 

(6) Develop an algorithm for the coupled thermo-elastic problem accounting for dependence 
of material properties on temperature in two-dimensions. This will involve: 

- Computation of the nonlinear heat transfer solution and investigation of the decompo- 
sition of the solution into asymptotic terms. 

- Extraction of the generalized flux intensity factors and generalized stress intensity 
factors for non-constant (temperature dependent) material properties. 

- Test implementation and documentation of the algorithms. 

Successful completion of these activities will address the following important questions for 
the most general (three-dimensional) problem: 

• What is the thermal, elastic and thermo-elastic solution near a 3D singular point associated 
with vertex, edge, and vertex-edge multi-material anisotropic interface problem? Conse- 
quently, what should be changed in the design so as to minimize the likelihood of failure initia- 
tion? Given a set of alternatives, which combination of materials is optimal, and which is the 
best geometric configuration? Which singularity is worse from th point of view of durability: 
The vertex, the edge, or the vertex-edge singularity? 

• When failure is observed in a device, how should it be modified so as to reduce the likelihood 
of a future failure? Which mode of failure is to be expected next? 

• How accurate are the parameters that influence failure initiation obtained by the numerical 
algorithm, i.e., how reliable are the results obtained by numerical simulation? 

• How does the temperature field affect the solution in the vicinity of singular points in three- 
dimensions? 
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• How should the analyst interpret the new GFIFs/GSDFs and the ' 'eigenpairs" when correlating 
with experimental observations? 

• How do the temperature dependent materials influence the singular solution? Consequently, 
what should be done to prevent or reduce the likelihood of failure initiation and propagation? 

Following is a detailed description of the plan for the development and implementation of the 
activities described above. 

3.2 Implementation Plan 

Three-dimensional singularities are considerably more difficult to analyze than two-dimen- 
sional ones, where only one type of singularity exists. In 3D in a neighborhood of the edges and 
the vertices the singular behavior is different. 

Edge Singularities: If a coordinate system (x,y,z) is located at an edge, with the y-axis along 
the edge, then there are three edge GSIFs which are y-dependent: Aj(y), An(y) andAnI(y). These 
edge GSIFs are analytic along the edge, however they become singular when this edge intersects 
with a free plane, at a vertex. In the neighborhood of an edge-vertex type geometry the GSIFs can 
be represented once again by vertex and vertex-edge stress intensity factors. For example, 
A,(y) = \SjjyyI'1 + smoother terms. 

i 

Vertex Singularities: In the neighborhood of a vertex, and away from edge-vertex geometry, 
the displacement field can be represented by only one vertex intensity factor and the correspond- 
ing eigenpairs. Investigating the mathematical behavior of the singularities in 3-D is an active 
field of research in the mathematical community, and the decomposition of the displacement field 
into singular and regular terms is documented in some recent papers. The application of the modi- 
fied Steklov method and the complementary energy principle for extracting GSIFs in 3D will be 
addressed. 

3.2.1 Introduction and Notation 

The solutions of linear heat-transfer problems in three-dimensions, for example in the vicinity 
of any singular point, can be decomposed into three different forms, depending whether the singu- 
lar point is in the neighborhood of an edge, a vertex or an intersection of the edge and the vertex. 
Mathematical details of the decomposition can be found e.g. in [13]-[16] and the references 
therein. A representative three-dimensional domain denoted by Q., which contains typical 3D sin- 
gular points is shown in Figure 21. Vertex singularities arise in the neighborhood of the vertices 
At, and the edge singularities arise in the neighborhood of the edge singularities A(y. Close to the 
vertex/edge intersection, vertex-edge singularities arise. Of interest is the solution of the mathe- 
matical problem: 

V2M = 0 in Q (32) 
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An-, 4 

Ar Vertex / 

Kjj- Edge between A-,and Aj 

FIGURE 21. Typical 3D singularities. 

u = 0 

3« 
dn 

= 0 

on rD c 3Q 

on rN c dQ 

(33) 

(34) 

where ufjt;, x2, x3) denotes the temperature field (in the following x2, x2 and x3 will be either Car- 
tesian, cylindrical or spherical coordinates), and TDuTN = dQ.. It shall be assumed the edges that 
intersect at vertices are not curved, and that crack faces, if any, lie in a plane. 

Edge Singularities: The edges denoted by A,y, which connect the vertices At and Aj, are consid- 
ered first. Moving away from the vertex a distance 8/2, and creating a cylindrical subdomain of 
radius r = e with the edge A,-.- as its axis, a subdomain is defined in the vicinity of the edge denoted 
bye6 e(A,7). Figure 22 shows the edge singularity subdomain e5 e(A12). 

The solution in e§ e can be decomposed as follows: 

l{rfi,z)=  yy aks{z)  ra\\nr)ßs(Q)   +   v(r, 6, z) 
(35) 

k=ls = 0 

k+l^.ak are called edge eigenval- where S > 0 is an integer which is zero unless ak is an integer, ak+ 
ues; aks(z) are called the edge flux intensity functions (EFIFs), are analytic in z but can become 
very large as they approach one of the vertices; and /**(0), called eigenfunctions, are analytic in 0. 
The function v(r, e,z) belongs to H2(e). It is assumed that ak for k < K is not an integer, therefore 
Eq. (35) becomes: 
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FIGURE 22. The edge neighborhood e8e(A12). 

a,.t 
u(r,Q,z)=  ^ak(z)  r kfilQ)   +   v(r,Q,z) (36) 

k= 1 

Vertex Singularities: A ball of radius p = 8, centered in the vertex Ax for example, is con- 
structed and intersected by the domain Q. Then, a cone having an opening angle § = a is con- 
structed along every edge intersecting at A1; and removed from the previously constructed 
subdomain, as shown in Figure 23. The resulting vertex subdomain is denoted by V§(A{), and the 
solution u can be decomposed in VgfAjJ using a spherical coordinate system by: 

L      Q 

2(p,4>,e) = XSfe 

/ = 1<? = 0 

„  pY'(lnp)%,(^0) +   v(p,(|),0) (37) 

where Q > 0 is an integer which is zero unless jt is an integer, yM > yt are called vertex eigenval- 
ues, and hiq($,B), called the eigenfunctions, are analytic in (J) and 0. The biq are called vertex flux 
intensity factors (VFIFs). The function v(r, e,z) belongs to H2(V). It is assumed that y; for / < L is 
not an integer, therefore, Eq. (37) becomes: 

w(p,<|>, 6) Z».p' 
/ = i 

hi®, 6) + v(p,<t),e) (38) 
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FIGURE 23. The vertex neighborhood Vs(Ai). 

Vertex-Edge Singularities: The most complicated decomposition of the solution arises in case 
of vertex-edge intersections. For example, consider the neighborhood where the edge A12 

approaches the vertex Al. A spherical coordinate system is located in the vertex Ah and a cone 
having an opening angle § = a with its vertex coinciding with A j is constructed with A12 being its 
center axis. This cone is terminated by a ball-shaped basis having a radius p = 8, as shown in 
Figure 24. The resulting vertex-edge subdomain is denoted by Ve^E(Ah A12), and the solution u 
can be decomposed in Ve^£(Ai, A12): 

(p) (sin<]>)a*[ln(sinO)]^(e)+y Y cl{.p
y'(]np)9hiq®ß) + v(p,4>, 9) 

k=ls = 0 

lksl 
Y; p   + m ks 

1 = 1 l=\q=0 

(39) 

where mks(p) is analytic in p; |^(0) is analytic in 9, and Ä/9(<t>,8) is analytic in <j) and 0. The func- 
tion v(r, e,z) belongs to H2(Ve). Again it is assumed that y; for / < L is not an integer, and ak for k 
<Kis not an integer, therefore, Eq. (39) becomes: 

k= 1 

u(p4,Q) =  J   ^akl py' + mk(p) 
l = \ 

(sin^gkiQ) 
i= l 

hi(<S?,Q) + v(p,<t>, 9) (40) 

The eigenvalues and the eigenfunctions are associated pairs (eigenpairs) which depend on the 
material properties, the geometry, and the boundary conditions in the vicinity of the singular point/ 
edge only. Similarly, the solution for problems in linear elasticity, in the neighborhood of singular 
points/edges is analogous to Eq. (35)-Eq. (40), the differences are that the equations are in vector 
form and the eigenpairs may be complex. For general singular points the exact solution uEX is 
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FIGURE 24. The vertex-edge neighborhood Ve^e(Ai, A12). 

generally not known explicitly, i.e., neither the exact eigenpairs nor the exact EFIFs, VFIFs are 
known, therefore numerical approximations must be found. 

3.2.2 Determination of the Eigenpairs 

First, the modified Steklov method for determining the eigenpairs in the neighborhood of the 
singular point is described. Herein the formulation for the elastic problem is provided for the case 
of the edge singularity described in Section 3.2.1. The formulation for the heat-transfer problem is 
similar but much less complex, therefore not presented herein. Consider the domain Q.*R shown in 
Figure 25, which represents a cross-section of an edge singularity, and where r, 9 are the coordi- 
nates of a cylindrical coordinate system located in the singular edge. 

By formulating the weak form over Q,*R, the singular edge is excluded from the domain of 
interest such that the accuracy of the finite element solution does not deteriorate in its vicinity. On 
the boundaries Tj and T2 traction-free or zero displacement boundary conditions are assumed: 

-t 

T = 0 or u = 0 on T,-, i=\, 2, 3 (41) 

In Q*R, ux, uy and uz may be represented as follows: 

u  =  < 

ux /i(6) " 

Uy . = r - /2(6) 

-   uz . { /3(6) J 
(42) 
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Material 2 

Material 3 

Singular Edge 

FIGURE 25. Cross section of an edge singularity for the modified Steklov formulation. 

Using Eq. (42) on T3: 

and a similar condition on T4. 

3 * * 
TT-U = (a/R)u or 

(43) 

Multiplying the equilibrium equation by v = {v^, vz}Ts H^Q.*^ x H^Q.*^, integrating 
using Green's theorem, and following the steps presented in Ref. [1], the modified Steklov weak 
form is: 

Seek ae C, 0*«s H\QR) XH\QR) 

B(U,V)-(NR(M,V)+NR.(Z,V)) = a(MR(t,i) + Ms.(u,v)), V ve   H\a*R) xHl(QR) 

where C is the complex plane and 

B(u,v) = JJJ([£>]v) [E]([D]u)dQdz, 

(44) 

z nB 

MR(u?v) = |J[vr[ß][£][Rlhr = R dQdz, 
z e 

NR(Vv) = Jj[vr[ß][E]([D(9)]«)]r = Ä dQdz, 

(45) 

(46) 

(47) 
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and [D], [D(e)], [Q] and [R] are given as follows: 

[D] = 

3 
0 0 

ÖX 

3 
0 

3y 
u 

a 
U u a^ 
a a ii 
dy ax 

a a 0 
3z a^ 

a a it Ldz a^ 

[Ö 
(9)n 

ae (-sin 9} 

0 

0 

coseA   (-sinG)^        0 

cos 6^- 0 

0 0 

0 0 COSG 
39 

0 (-sine) 
30 

(48) 

[ß] 

cosG 0 0 sinG 0 1 
0 sinG 0 cosG 1 0 

0       0    10    sinG cosG 

[R] = 

cosG 0       0 

0 sinG     0 

0 0       0 
sinG cosG    0 

0 0     sinG 

0 0    cos6 

(49) 

and [E] is the material stiffness matrix. 

Remark 1. The domain Q,*R does not include a singular edge, hence no special refinement of 
the finite element mesh is required. 

Remark 2. The formulation of the weak form was not based on the assumption that the mate- 
rial is isotropic, and in fact can be applied to multi-material anisotropic interface. 

The domain Q*R is divided into finite elements through a meshing process. The polynomial 
basis and trial functions, {Oj}, are defined on a standard element in the t„ r\, C, space such that -1< 
£<1,-1<TI<1,-1<£<1. The entries of the unconstrained stiffness matrix corresponding 
to B(u,v) are given by (see Ref. [1]): 

Kv = \\ \ (W{®i})T[E][D]{®j}dadz (50) 

z ns 

For simplicity, on T1 and T2 traction-free boundary conditions are assumed. Consider first 
N(u,v) = NR(u,v) + N .(u,v). The entries of the matrix [A^] corresponding to the bilinear form NR are 
computed using Gauss quadrature: 
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S      T 

<*</>* = X X w*w< X Jw^n wy w (51) 

i = 11 = 1 /, k = 1 

where W^, Wt, are the weights and !;, r| are the abscissas of the Gauss quadrature points, respec- 
tively, and Pu and dPkJ are matrices given explicitly in Ref. [1]. 

The entries of [MR] are: 

co-6   s   T 6 

(Miy.)fi - -^ X X w*w< X ^^W^-1^ <52> 
5=11=1 /, * = 1 

Expressions similar to Eq. (51) and Eq. (52) exist for the matrices [NR*] and [MR*]. 

Denoting the set of all coefficients by [utot], and the set of coefficients associated with T3 and 
r4 by {uR}, the following eigenproblem is obtained: 

(IK) - [NR] - [NR.]){utot] = a([MR] + [MR.]){uR} = a[M]{uR} (53) 

The vector which represents the total number of nodal values in Q*R can be divided into two 
vectors such that one contains the coefficients {uR}, the other contains the remaining coefficients: 
[utot}

T= {[uR}T, {uin]T}. By eliminating [uin], the reduced eigenproblem is obtained: 

[Ks]{uR} = a[M]{uR} (54) 

Solution of the eigenproblem given by Eq. (54) yields approximations for eigenpairs with high 
accuracy, efficiency and robustness. 

3.2.3 Extraction of the GSIFs. 

Once the eigenpairs have been computed, they are used for extracting the GSIFs from the 
finite element solution. The procedure is as follows: First the elastostatic problem is solved over 
the entire domain Q. by means of the finite element method based on the displacement formula- 
tion, thus obtaining UFE . Second, a small sub-domain around the singular edge is considered. 
Define SR as the set of interior points of a circle of radius R, centered on the point P. Q.R is defined 
by Q. n RR x lv where Iz is a segment along the edge: 7Z = {z I zj < z < z2) and TR is the circular 
part of its boundary. See Figure 26. 

The complementary variational principle over DR can be stated as: 

Seek G0 e EC(Q.R), such that 
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FIGURE 26. Typical cross-section of an edge singularity. 

BciOo.ad = Fc(ox) V o-i   e £c(Qfl) (55) 

EC(Q.R) being the statically admissible space (see a detailed definition in Ref. [2]), and Bc and Fc 

are given by: 

^(00,0-!) = jjjallET^dQdz 

Fc(°i) = J j " [Qteidsdz 

(56) 

(57) 

where [E\ is the material matrix, dQ.R
(u) is that part of the boundary where the displacement vector 

u is prescribed, and [Q] is given in Eq. (49). 

For the complementary weak form the trial and test spaces are chosen to be linear combina- 
tions of the eigenstresses, which are computed from the eigenpairs, using the stress-strain rela- 
tionship and Hooke's law. In the three-dimensional case it has to be recognized that the stress 
intensity factor is a function of z. Therefore the stress intensity is discretized using polynomial 
basis functions which are energy orthogonal on the interval Iz. 
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The ij-th term of the compliance matrix which corresponds to the bilinear form in Eq. (56) is 
given by: 

(Bc).. =  f f   f   /"'   +ay   _1) £ (DujkEkl(Du)'idrdQdz (58) 
,0    6, i:k = x 

a/R) being the real part of the eigenpair, and (Duf is a vector corresponding to the;'-th eigenfunc- 
tion and is given in Ref. [2]. 

The eigenstress tensor, having been derived from the eigenpairs, automatically satisfies the 
boundary conditions on all boundaries except TR, so that the linear form in Eq. (57) degenerates 
into an integral over the cylindrical boundary TR x Iz alone. 

Replacing the vector u in Eq. (57) with the approximated finite element solution on T3 x Iz, 
uFE, the;-th term of the load vector corresponding to the linear form Eq. (57) becomes: 

-  U) (Fc)j = R\\   Z
T

[Q][E](DU 

I, «I 

dQdz (59) 
(r = R) 

where [Q] is given in Eq. (49). 

Solving Eq. (55), one obtains an approximation for the coefficients of the asymptotic expan- 
sion, the GSIFs. Numerical tests demonstrated that the rate of convergence of the GSIFs is as fast 
as the convergence of the strain energy, therefore the method is "superconvergent". Analogous 
procedures will be needed for the computation of eigenpairs and stress intensity factors at vertex 
and vertex-edge singularities. 

3.2.4 Thermal Loading: Computation of the TSIFs. 

In [3] a mathematical analysis on the influence of the temperature field on the stress intensity 
factors is presented. The main results show that elastic bodies containing singular points subjected 
to steady-state heat distribution experience stress intensification determined by thermal stress 
intensity factors (TSIFs). These TSIFs are the first two coefficients of the asymptotic expansion in 
Eq. (1). The principle of complementary energy, together with the modified Steklov method and 
the p-version of the finite element method can be utilized, as shown in Section 2.3, for obtaining 
the TSIFs in a limit process as the integration radius around the singular point approaches zero. 
Although very good results can be obtained, it is necessary to refine the finite element mesh in the 
vicinity of the singular point. This is because the present method relies on the displacement field 
close to it. Importantly, the proposed method is applicable not only to singularities associated with 
crack tips, but also to multi-material interfaces and non-homogeneous materials. It has been 
shown also that for weak stress singularities the method has to be modified to include terms asso- 
ciated with the displacement field due to the singular temperature field around the singular point. 
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Once these terms are included, the integration radius can be enlarged to obtain good approxima- 
tion for the TSIFs without the need for mesh refinement. The implications of the analysis on the 
computation of the TSIFs are the following: 

(a) The most singular term in the stress tensor in the neighborhood of a singular point is inde- 
pendent of the asymptotic expansion of temperature. 

(b) The TSIFs are independent of the thermal field in the vicinity of the singular point. Never- 
theless, these TSIFs depend on the far thermal loading, which is the solution of the linear 
stationary heat transfer problem affected by the singular point. 

(c) The TSIFs may be extracted using the modified Steklov method and the complementary 
energy method in a limit process as the integration radius approaches zero, without 
addressing the thermal distribution in the neighborhood of the singular point. 

3.3 Schedule 

It is estimated that the activities leading to the completion of the three-dimensional implemen- 
tation will take two years. A Phase II STTR proposal was submitted to the Air Force Office of 
Scientific Research on September 12, 1996 with a detailed performance schedule. 

4 Summary 

All of the objectives set for the Phase I project have been achieved. Capabilities for the evalu- 
ation of the mechanical strength of electronic components subjected to thermal and mechanical 
loading was developed for two-dimensional applications. The implementation, based on recent 
technological advances, makes it possible to determine the natural straining modes and their 
intensities at singular points associated with multi-material interfaces. 

The computational techniques were implemented in a two-dimensional setting as a module 
within the existing software infrastructure of Stress Check, which was developed by the small 
business concern (ESRD) over the past six years. Stress Check is based on the p- and hp-versions 
of the finite element method and has several innovative capabilities not available in other finite 
element programs. The new capabilities are available for professional use through Stress Check. 
The user-information is available in Chapter 12 of the user's manual of Stress Check [17]. 

The Phase I project also investigated the feasibility of the implementation of the computation 
of the eigenpairs that characterize the temperature and displacement fields in the vicinity of singu- 
larities caused by multi-material interfaces in three-dimensions. Successful completion of the 
activities to extend the current implementation into three-dimensions, will lay the groundwork for 
quantitative evaluation of the conditions that cause mechanical failure in electronic devices and 
composites. This technological development is an essential prerequisite to proper interpretation of 
experimental data in much the same way as the ability to compute stress intensity factors in linear 
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elastic fracture mechanics is an essential prerequisite to proper interpretation of experimentally 
obtained crack propagation data. This analytical capability, coupled with reference data obtained 
from simple experiments, will make it possible to evaluate design alternatives in the fields of elec- 
tronic component design and composite materials technology. The capability will be made avail- 
able for professional use through the finite element analysis software Stress Check. The new 
capability is expected to be of substantial interest to manufacturers of electronic components, 
aerospace companies, and their suppliers. 

The project addressed the thermo-mechanical aspects of failure initiation in electronic compo- 
nents under the assumption that the natural straining modes of the linear thermoelastic problem 
characterize failure. It is expected that for many materials in the normal operating temperature 
range it will be possible to verify this assumption experimentally. 
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